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1. INTRODUCTION

This report describes continued experimental work performed on the axisymmetric, single-
driver, shock-tube model of a large blast simulator (LBS) located at the Centre d’Etudes de Gramat
(CEG), France. The purpose of this work remains the same as that in the previous report: to
provide data for comparison with computer codes, to assist in the design, and to assess
modifications to a large blast thermal simulator (LB/TS) contemplated for the U. S.! In particular,
a more extensive and better instrumented set of heated-driver gas tests was made. A few
preliminary, heated-driver tests had been made earlier.? Also, tests were made without the diverging
nozzle section following the nozzle throat/diaphragm station, opening discontinuously to the full-
driven tube diameter. These discontinuous expansion tests were made to determine whether one,
could smooth the initial pressure spike noted in the pressure waveform at the lower shock ptessxfre
levels, when using the conical expansion section.

The last section presents a set of tests performed with the original converging/diverging
nozzle, but with an enlarged throat, to give a driven-tube-to-throat-area ratio of 16 rather than the
original ratio of 29, as for the CEG design. The objective for these last tests was to determine the
performance gain over the original design in order to achieve shock over-pressures of up to 35 psi
(240 kPa) and as an altemative to the engineering problems arising from driver-gas heating and
from the construction and operation problems of a cold-driver facility. These questions and the
work performed are discussed in the following sections.

2. LBS MODEL AND TEST PROCEDURES

The LBS model is the axisymmetric, 2-dimensional model constructed to 1:37 scal:c of the
CEG multidriver facility.’ For completeness, a sketch is shown of the internal geometry of the
model. One design feature in particular should be noted: There is an annular plate that is removed
above certain shock pressure levels and allows outside air to be entrained, resulting in an extension
of the waveform’s positive duration (corresponding to changes in weapon yield). This feature is
not used in the tests, described in Sections 3 and 4, to facilitate computer modelled comparisons.
The basic instrumentation consists of PCB piezoelectric pressure gages and Endevco semiconductor,
four-bridge-wire, strain-gage transducers t0 monitor static and stagnation pressures along the driven
tube and at the test station 7. The station numbers correspond to tube d ..ters down the driven
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section measured from the nozzle exit as before.! Analog tape recorders acquire the pressure and
other data, which are then digitized off-line for analysis.

3. HEATED DRIVER GAS TESTS

Heating of the driver gas offers two advantages over normal shock tube operation. It permits
pressurizing the driver to more moderate levels for the same shock-pressure level and, hence, makes
feasible less massive driver tubes, and it mitigates the disturbing effects of cold-driver gas arrival at
the test station. A series of heated-driver gas shots was made to provide data and to establish
performance for a complex geometry shock tube. The method of heating was reported in
Reference 2.

Essentially, a number of resistance heater strips distributed about the driver tube periphery
brought the driver walls and the contained driver gas to high temperature. For the present tests,
Omega Corporation chromel-alumel thermocouples protruding approximately 2.54 cm into the
interior volume monitored the driver gas temperature. This arrangement allowed for more
confidence in the temperature read out over that used for the earlier, preliminary tests, in which the
present thermocouples were unavailable. It is worth noting that the external, wall-mounted
thermocouple, as used in preliminary experiments and retained here for a check on the previous
data, gave driver-gas temperatures within 10-15° F of the interior-reading thermocouples. A
divergence in readings occurred only during the inletting of gas, occasioning local temperature
fluctuations that clearly are not followed by the exterior walls.

A temperature range of 423-533 K (300-500° F) was used. Shots are listed in Table 1, and
Figure 2 illustrates the LBS Model performance with heated driver gas. Shown for corfiparison are
results from previous runs with cold driver gas.'* This series of shots was performed with annular
plate in place, preventing entrainment of outside air, to permit more convenient computational
modelling of the tube geometry for theoretical comparison. The increased performance gain using
the heated driver is clearly evident. At the highest shock pressure of 225 kpa (33 psi) the driver
pressure required, when T4/T1=1.75, is only about one-half that for the cold driver.

A calculation for the driver gas temperature ratio and flow conditions required for "matched"”
conditions across the contact surface has been made by Pearson,* using the BRL QID code.
Essentially, a trial and error procedure was used to find the smoothest dynamic pressure trace in the
region of the contact surface. This gave the flow conditions necessary to achieve matched density
across the interface.




TABLE 1. Heated Driver Gas Flow Conditions.

Shot no. P4Pl  AP2,psi  AP2, kPa P2/P1 T4/T1
2 106 32.6 225 321 175
4 80.2 28 193 2.89 75
5 90.7 30.5 210 3.06 1.75
6 7.1 26.8 185 2.8 175
7 58.3 25.4 175 271 175
8 61.7 232 160 2.57 1.75
9 50.4 18.9 130 2.27 1.75
19 314 13.5 93 1.91 1.75
20 20.6 10.2 70 1.69 1.75
22 167 41 283 3.79 175
23 132 34.8 240 3.37 1.75
10 56.9 20.6 142 24 1.59
11 68.6 25.4 175 2.1 1.59
12 45.9 18.1 125 2.22 1.59
13 54.4 20.3 140 2.37 1.59
17 22.6 109 75 1.73 1.59
18 334 14.5 100 1.98 1.59
14 38.8 16.7 115 2.13 141
15 47.6 18.9 130 2.27 141
16 60.8 21 145 2.42 141

Note: P4/P1 and T4/T1 are driver gas pressure-temperature ratios, P1 and T1 being
the ambient; AP2 is the shock over-pressure; P2/P1 is shock pressure ratio or

shock strength.
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Figure 2. Heated driver gas performance of LBS
model and comparisons with unheated
driver gas data.
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The use of natural bursting of diaphragms by overpressure and the limited selection of
diaphragms available prevented achievement of precisely the flow condition believed necessary.
However, achievable shots with flow conditions bracketing the matched condition were believed
sufficient to check the theoretical points; for driver/shock pressures to the high side of that
predicted for a given temperature matching, the stagnation pressure trace would respond to the
higher temperature, lower-density-shocked gas, then lead to a "jump” in the trace indicating the
colder, higher-density driver gas flowing over the gage. For the opposite situation of driver/shock
pressure to the low side for matching, the driver gas will be warmer, and less dense than the
shocked gas; hence, a drop in the stagnation pressure trace would signal the arrival of driver gas
following the shocked gas.

The actual records do not, unfortunately, reveal such detail because of the inherent noisiness-
of the traces. As an example, the stagnation traces for the shots grouping about the matched
condition P4/P1=87 (APs=17S kpa) and T4/T1=1.75 (rc Pearson®) are shown in Figures 3a-e. The
flow parameters for these shots are found in Table 1. The shots are shown in descending order of
shock strength, with shot 85-7 as the "matching condition.” Shots 85-5 and -6 are to the high side,
and spikes occurred some 4 msec after shock arrival of these two shots. Shots 85-8 and -9 are to
the low side of the matched condition. However, it is not possible to detect any drop in pressure
level with the expected contact surface arrival within 5 msec after the shock. These tests, plus
others grouping about Pearson’s "matched” flow conditions, are graphed in Figure 4 as the open
symbols. Pearson’s predicted points are the closed symbols, at the T4/T1 as specified on the graph.
From these few data, a marked discrepancy can be detected between the predicted shock pressures
and the experimentally determined shock pressures at matching conditions for a given T4/T1. The
reason for this is not clear, although the agreement between predicted and experimental cold-driver
results is reasonable.! Further computational work is planned, including use of a new 2D BRL
code.

4. DISCONTINUOUS AREA FOLLOWING NOZZLE THROAT

The pressure traces from a low-level shot series reported in Reference 1 are reproduced in
Figure 5. One may discem evidence of a leading pressure "spike” in the waveforms, as was seen
in the full-scale CEG results, a low-level example from which is shown in Figure 6. The spike is
typically about 30-msec width in the full-scale facility, and it corresponds to the LBS Model’s spike
width when scaled by the 1/37 factor. The leading pressure spike is also noted in the LBS model
computations with the BRL QID code.'?
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Figure 7 is a figure reproduced from Reference 5 showing how a change in nozzle
configuration with respect to the driven tube can influence the amplitude of the spike. Apparently,
a nozzle opening to the full driven tube diameter induces a more severe spike, at all nozzle half
angles considered, than the LBS Model nozzle, which opens only partially, then forms a
discontinuous area jump to the driven tube area. The evidence suggests that the spike might be
avoided by removing the divergent nozzle and discontinuously opening the throat of the nozzle to
the driven tube area.

As an experimental check, an assembly without divergent nozzle, the nozzle throat opening
directly into the driven tube, was installed in the LBS Model, and some low shock pressure tests
were performed (Table 2). The annular plate was kept in place (no air entrainment) to facilitate the
comparison with the computer model. Figure 8 shows resuits, for stations grouping about the test
station 7, for two shock conditions. The smoothing of the initial spike, if any, is somewhat
questionable in view of the noisiness of the traces. However, the waveforms are not noticeably
worsened by the use of the sharp area change to the driven tube. This finding may obviate the
need for a diverging nozzle section following the diaphragm throat, with consequent cost savings in
construction. This conclusion should be checked in the new BRL Multi-Driver Shock Tube facility.
Without refinement of the instrumentation for these shots, further conciusions at this time cannot be
made with regard to spike formation.

5. TESTS WITH ENLARGED THROAT

Some tests were performed with the LBS Model’s throat enlarged to 6.35 cm (2.5 in) from
the original 4.72 cm (1.86 in). Enlarging the throat tends toward the 1:1 throat area ratio of the
simple straight-shock tube and, thus, should give a stronger shock for a given driver préssure.
Desired performance levels could be achieved at lower maximum driver pressures, which cause less
stress in tubing walls and require less critical welds in overly thick tubing. The modification leads
to a throat-to-driven-tube-area ratio of 1:16, compared to the original LBS Model and CEG Facility
ratio of 1:29. Demonstration of sufficiently enhanced performance with the enlarged throat area
would support a useful design consideration for the full-scale LB/TS Facility.

Thus, the converging-diverging throat of the LBS Model was bored out to the requisite throat-
area ratio. The axial length scale for the throat naturally was destroyed, but this feature was
deemed not essential for the interpretation of the results. The results and the flow conditions for a
small set of tests at the higher shock pressure levels are exhibited in Table 3. Results are also
plotted in Figure 9 to show comparison with previous data. The enhanced performance is clearly

12
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TABLE 2. Low-Level Shot Series with Discontinuous Area Opening from Diaphragm Throat.

Shot no. P4/P1 AP2, psi AP2, kPa P2/P1
25 219 104 72 1.70
26 41.6 133 92 1.89
27 512 14.1 97 1.94
28 50.5 142 98 1.95
29 88.1 20.6 142 2.38
30 115 242 167 2.62
31 135 27.6 190 2.85

TABLE 3. Flow Conditions and Results for Enlarged Throat.

Shot no. P4/P1 AP2, psi AP2, kPa P2/P1
32 212 122 84 1.82
33 34 17 117 2.14
34 39 189 130 227
35 83 283 195 2.89
36 108 322 222 3.16
37 113 334 230 324
38 114 326 225 3.19
39 133 34.4 237 3.31
40 161 35.5 245 3.41

14
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observed. The levels are comparable to those of the heated-driver-gas tests at T4/T1=1.75
(T4=500" F), previously obtained. However, with the present unheated driver gas, one must expect
disruption of tests in which drag is a sensitive factor, when the cold driver gas arrives at the test
station, unless one moves the test station farther downstream to mitigate such effects. Then, the
shock pressure levels may decay to levels below those desired.

6. CONCLUSIONS AND SUMMARY REMARKS

In previous reports conceming the operation of the 1/37 scale LBS Model,'* the model
performance was determined for shock overpressures to better than 200 kpa (30 psi), and various
properties of the produced flow were examined. Detailed comparisons were made with predictions
obtained from a new BRL QID code to assess the code’s ability to predict flows from a complex
geometry shock tube. In this report, further experimental work has been performed with the
objective of looking at modifications to the basic geometry or operation of the LBS.

Specifically, tests with heated driver gas were performed. Appropriate heating produces higher
strength shocks at lower driver pressures and matches the dynamic pressure across the contact
surface (driver/driven gas interface). Important operational benefits are gained, together with a
lighter construction. Some tests using a discontinuous nozzle and throat-to-driven-tube opening
were made in an effort to remove an initial pressure spike noted in both the model and the full-
scale facility test results, as well as in the computed BRL-QID simulations. The experimental
results were inconclusive in this regard, due to noisiness of traces. However, the results did
suggest that flow quality was not worsened when the divergent nozzles were omitted. Thus,
material costs and operating efficiencies could be affected by using such discontinuous nozzles.
Tests in the new BRL Multi-Driver Shock Tube model should also be done to verify that the flow
quality is indeed maintained for the seven area discontinuities in that configuration. Finally, a few
tests with enlarged throat diameter (1/16 throat-driven-tube area versus the original 1/29 scale)
showed performance enhancement comparable to that achieved with the driver gas heating
experiments.
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